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Two different methods of analysis were developed in order to clarify the phenomenon of paper
flutter. One of these is a flutter simulation using a Navier–Stokes code (N–S simulation). N–S
simulation was used to determine the unsteady lift force, the amplitude of flutter, and the air-
flow around a paper sheet, by means of a time-marching scheme. The other form of analysis is
based on a potential-flow analysis of an oscillating thin airfoil via an eigenvalue analysis for
determining stability. The flutter speeds and flutter modes obtained by each method are
consistent. Aspects of the behavior of paper flutter that had not been clarified in the
experimental analysis were clarified by potential flow analysis. From the results of this study, it
was shown that potential flow analysis is very convenient and adequate for a parametric study
of this problem. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Experimental and numerical studies have been carried out since around 1990 for
the purpose of clarifying the paper flutter phenomenon, which currently limits the speed
of printing machines and paper machines; see, e.g., Watanabe et al. (1991, 1997).
The findings of these studies are presented in two papers. The first paper (Watanabe et al.
2002) describes the background of the study and the conditions of paper flutter in
real machinery, and reported on the experimental study in which wind tunnel tests
were conducted. This, the second paper, reports on the theoretical study, in which
two numerical methods using a super-computer and a personal computer were
employed.

First, we present the features of each of the present methods and the relationship with
other recently reported methods. The theoretical study of the sheet flutter phenomenon
can be classified, as shown in Table 1, according to the analysis domain (time or
frequency), the flow field, and the stability analysis used. These methods are all two-
dimensional; the cost and time required for a three-dimensional analysis of this problem
are prohibitive, and it is considered that in most circumstances, flutter behaviour can be
well approximated by a two-dimensional model. The methods of analysis in the present
study are listed as items 3 and 7 in Table 1.
0889-9746/02/040543+18 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.



Table 1

Various methods for sheet flutter analysis

Method Analysis domain Flow field Stability analysis References

1 Time domain Potential flow Energy analysis by assumed-
mode method

Noguchi et al.
(1995)

2 Time domain Potential flow Time-marching analysis by
generalized coordinate

Huang (1995)

3 Time domain Viscous flow Time-marching analysis by
Navier-Stokes code

Present study

4 Frequency domain Potential flow Eigenvalue analysis by
300th-order determinant for
multi-elements

Yamaguchi et al.
(1999)

5 Frequency domain Potential flow Eigenvalue analysis second-or-
der determinant for generalized
coordinates

Kornecki et al.
(1976)

6 Frequency domain Potential flow Eigenvalue analysis by
10th-order determinant for
generalized coordinates

Guo & Pa.ııdoussis
(2000)

7 Frequency domain Potential flow Eigenvalue analysis by
fourth-order determinant for
generalized coordinates (U2g
method)

Present study
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Method 1 was adopted by Noguchi et al. (1995), in which the unsteady lift for an
assumed mode was analysed by the vortex method, and instability was determined from
the change in energy of the sheet, induced by unsteady lift. It is difficult to accurately
estimate flutter conditions with an assumed mode, because the flutter mode of a sheet is
not simple. Method 2 was adopted by Huang (1995), in which the unsteady lift was
determined by potential flow theory, and the response was analysed in the form of a time-
marching scheme by solving the equations of motion for the generalized coordinates. A
stability boundary was determined from the growth exponent.

Method 3 is the first method employed in the present study, in which the unsteady
lift, the response of the paper sheet, and the flow around the sheet were numerically
analysed by Navier–Stokes code with a time-marching solution; see, Isogai (1993).
The stability boundary was determined from the growth exponent in the same manner
as method 2. A super-computer was used to conduct the N–S simulation of method 3,
and the computation time was up to several hours for a single case. Method 4 was adopted
by Yamaguchi et al. (1999), in which the chord of a paper sheet was divided into
50 elements, with 306 equations [(50+1)� (6 unknown variables)=306]. Stability
was determined using a high-order (300) determinant. Method 5 by Kronecki et al.
(1976), method 6 by Guo & Pa.ııdoussis (2000) and method 7 in the present study are
all based on an eigenvalue analysis for the generalized coordinates. However, the methods
differ in several ways. The flutter determinant was obtained using Galerkin’s method in
methods 5 and 6, whereas here it is obtained by applying Lagrange’s equation.
Furthermore, second- and 10th-order flutter determinants were used in methods 5 and
6, while here we employ a fourth-order determinant; the effective range of the solution
using the second-order determinant is limited to a region of high mass ratio, and the 10th-
order determinant appears excessive. Method 7 appears to be the most convenient of the
existing methods.

In this paper, the details of the applications of methods 3 and 7, and the behaviour of
sheet flutter as described by these methods, are reported.



THEORETICAL STUDY OF PAPER FLUTTER 545
2. EQUATIONS OF MOTION

The displacement y of the sheet can be represented by the series:

yðx; tÞ ¼
Xn
i¼1

qiðtÞfiðxÞ; ð1Þ

where qiðtÞ are the generalized coordinates and fiðxÞ are the natural modes. The modes of a
cantilever beam were used for fiðxÞ,

fiðxÞ ¼ 1
2
½fcoshðRi x=cÞ � cosðRi x=cÞg � SifsinhðRi x=cÞ � sinðRi x=cÞg	; ð2Þ

where the values of Ri and Si for i ¼ 124 are as follows:

R1 ¼ 1 
875; R2 ¼ 4 
694; R3 ¼ 7 
855; R4 ¼ 19 
996;

S1 ¼ 0 
734; S2 ¼ 1 
018; S3 ¼ 1 
000; S4 ¼ 1 
000:

The equations of motion for qi can be derived using Lagrange’s equation, [see, e.g.,
Bisplinghoff et al. (1955)], as follows:

Mi .qqi þ o2
i Miqi ¼ QLi þQDi; ð3Þ

where Mi is the generalized mass of the paper sheet, and can be written for each mode of
cantilever beam as

Mi ¼ m

Z b

�b
f 2i dx ¼ mc=4; ð4Þ

QLi is the generalized lift due to the unsteady lift, and QDi is the generalized drag due to the
y-direction component of friction drag acting along the sheet surface. QLi and QDi are
expressed as

QLi ¼
Z b

�b
pðx; tÞfi dx; ð5Þ

QDi ¼
Z b

�b

d

dx
TðxÞ

dy

dx

� �
fi dx ¼

1

2
rU2CD

Z b

�b

d

dx
ðb� xÞ

dy

dx

� �
fi dx; ð6Þ

where TðxÞ is the tension due to the friction drag. The equations of motion are analyzed
using the N–S simulation and the potential flow analysis in order to obtain the flutter
speeds of paper sheets, as described in the following. Tension was not introduced in the N–
S simulation.

3. NAVIER–STOKES SIMULATION

3.1. Simulation Method

The Navier–Stokes (N–S) simulation method is outlined in Figure 1. The computational
code applied to the analysis of unsteady lift is a 2-D compressible N–S code. This code was
originally developed for the simulation of dynamic stall phenomenon for an airfoil
oscillating near the static stall angle. For analysis in the incompressible regime, a good
correlation with experiments has been obtained at a low Mach number, M ¼ 0 
3.

The Yee–Harten TVD Scheme (Yee & Harten 1985) was employed as the finite
difference technique to solve the N–S equations. The grid used for the calculation is a
body-fitted grid that moves with the motion of the sheet. The equations of motion for the
generalized coordinates were then analysed using Houbolt’s method (Houbolt 1950) for
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Figure 1. Flutter simulation by Navier–Stokes code (N–S simulation).
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the finite difference equations. The analysis is iterated until the rate of growth or damping
can be determined. The conditions of analysis are as follows: (i) properties of the sheet:
c ¼ 0 
297m, h ¼ 106 mm, rp ¼ 1340 kg/m3, E ¼ 3 
23� 109 Pa, (ii) mass ratio: m ¼ 0 
39,
(iii) number of natural modes: 10, (iv) dimensionless time step: DtðU=bÞ ¼ 6� 10�4.

3.2. Response and Flutter Speed of Paper Sheet

The responses of modes 1–4 in the unstable region (U ¼ 1 
6m/s) in the N–S simulation
are shown in Figure 2(a). The frequencies of all modes are consistent after half a cycle
from the start of the calculation. The amplitudes can be seen to grow with time. The first
mode exhibits the largest amplitude, and the amplitude decreases in the second, third and
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Figure 2. Time-marching response by N–S simulation, in the unstable region (U ¼ 1 
6m/s, m ¼ 0 
39):
(a) response of the component mode; (b) response of the trailing edge.
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fourth mode, in that order. The amplitudes of the fifth and higher modes are small enough
to be ignored. The flutter frequency is 3 
 26Hz. In this case, the natural frequency of the
third mode (5 
 26Hz) was lowered by the unsteady lift, to the value obtained for the flutter
frequency. The overall response of the trailing-edge of the sheet, shown in Figure 2(b), was
obtained by superposing the amplitudes of each mode qiðtÞ in Figure 2(a). The time history
is similar to that of the first mode, q1ðtÞ.

The amplitude can be seen to be most influenced by the first mode, and the frequency to
be most affected by the natural frequency of the third mode. Figure 3 shows the response
of the sheet in the stable region (U ¼ 1 
3m/s). The flutter speed was defined as the wind
speed at which the growth exponent becomes zero. Thus, the flutter speed is 1 
 46m/s from
the positive exponent of Figure 2(b) and the negative exponent of Figure 3(b). The
dimensionless flutter speed is defined by the following formula:

U�
S ¼ US=ðEI=rc3Þ

1=2: ð7Þ

The dimensionless flutter speed was calculated to be 14 
 6. This result is used to verify the
accuracy of the potential flow analysis.

3.3. Flowaround Sheet

Figure 4(a) shows the isovorticity contours of the airflow around a deformed sheet at
rest as generated by N–S simulation. Figure 4(b) shows the same simulation results for a
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Figure 3. Time-marching response by N–S simulation, in the stable region (U ¼ 1 
3m/s, m ¼ 0 
39):
(a) response of the component mode (b) response of the trailing edge.
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fluttering sheet. Large-scale air-flow separation was observed in the deformed sheet at rest,
and yet no separation was observed in the fluttering sheet, in spite of the large-scale
movement. Figure 4(c) shows the air-flow around the fluttering sheet from wind tunnel
tests (Watanabe et al. 2002), using the smoke-wire method. The air-flow behaviour in the
simulation is consistent with that observed in this experiment. The air-flow in both cases is
close to that obtained by the potential flow theory. From these results, potential flow
theory is considered to be applicable to the analysis of sheet flutter.

4. POTENTIAL FLOW ANALYSIS

4.1. Method of Analysis

Potential flow analysis in the frequency domain was carried out by using the four
natural beam modes, as it was shown by the N–S simulation that modes higher than the
fifth could be ignored in flutter analysis. The method of potential flow analysis is outlined
in Figure 5. Aerodynamic analysis involves the analysis of the generalized unsteady lift
QLij of the 4� 4=16 element system using the theory of an oscillating thin airfoil in
inviscid incompressible flow. The unsteady lift, once calculated, can be used universally for
flutter analysis in all conditions. Stability analysis involves the eigenvalue analysis of a
4� 4 determinant, and at the same time, the flutter speed, frequency and mode are
obtained.



Figure 4. Flow around sheet: (a) isovorticity contour around a deformed sheet at rest by N–S simulation ;
(b) isovorticity contour around a fluttering sheet by N–S simulation (the sheet moves from 1 for 3); (c) streamlines

around a fluttering sheet by smoke-wire test.
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4.2. Analysis of Aerodynamic Force

4.2.1. Generalized force due to unsteady lift

The unsteady pressure of a sheet that oscillates in simple harmonic motion in the jth mode
is expressed as follows:

pjðyÞ ¼
1

2
rU2cpjðyÞ=b; ð8Þ

where cpjðy; tÞ is the pressure coefficient, which can be expressed as follows according to the
K .uussner–Schwarz (1941) theory:

cpjðyÞ ¼
4

p

Z p

0

ikfj þ b
dfj

dx

� �
fCðkÞð1� cosy�Þ þ cosy�gcot

y
2

�

þik
1

2
ln

1� cosðyþ y�Þ

1� cosðy� y�Þ
siny� siny�

siny

cosy� � cosy

#
dy�;

where CðkÞ is Theodorsen’s function. The following approximation (Fung 1955) was used
in the present analysis:

CðkÞ ¼ 1�
0 
165

1� ð0 
041=kÞi
�

0 
335
1� ð0 
32=kÞi

: ð10Þ
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Figure 5. Flutter simulation by potential flow analysis.
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From equations (5) and (8), QLi is

QLi ¼
X4

j¼1

Z b

b

pjðy; tÞ fi dx ¼
1

2
rU2

X4

j¼1

Z p

0

cpjðyÞ fi siny dy
� �

qj

¼
1

2
rU2

X4

j¼1

CLijqj ; ð11Þ

where

CLij ¼
Z p

0

cpjðyÞ fi siny dy: ð12Þ

Since CLij is a complex number, it is represented in the complex form by

CLij ¼ CLijR þ iCLijI ð13Þ

where CLijR and CLijI are the real and imaginary parts of CLij . The 16 elements of CLijR and
CLijI are calculated using equations (8)–(13), and shown in Figures 6 and 7.
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4.2.2. Generalized force due to aerodynamic drag

By applying integration by parts to equation (6), QDi can be expressed as

QDi ¼
1

2
rU2CD

Xn
j¼1

Z b

�b
fi

d

dx
ðb� xÞ

dfj

dx

� �� �
dx qj

¼ �
1

2
rU2CD

Xn
j¼1

Z 1

�1

ð1� x�Þ
dfi

dx�
dfj

dx�
dx�qj ¼ �

1

2
rU2

Xn
j¼1

CDijqj ; ð14Þ

where

CDij ¼ CD

Z 1

�1

ð1� x�Þ
dfi

dx�
dfj

dx�
dx�: ð15Þ
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motion; (b) second mode motion; (c) third mode motion; (d) fourth mode motion.
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4.3. Flutter Determinant

By substituting equations (11) and (14) into equation (3), the equation of motion becomes

Mi .qqi þ o2
i Miqi ¼

1

2
rU2

X4

j¼1

CLijqj �
1

2
rU2

X4

j¼1

CDijqj ; i ¼ 124: ð16Þ

By assuming that the flutter motion is harmonic, and by introducing artificial damping, g,
which is necessary to maintain sinusoidal motion, the following flutter determinant can be
derived:

Z � A11 �A12 �A13 �A14

�A21 O2Z � A22 �A23 �A24

�A31 �A32 O3Z � A33 �A34

�A41 �A42 �A43 O4Z � A44

									

									
¼ 0; ð17Þ
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where

Z ¼ 2mk2ð1þ igÞðo1=oÞ
2; Oi ¼ ðoi=o1Þ

2;

Aij ¼ CLij � CDij ; Aii ¼ 2mk2 þ CLii � CDii:
ð18Þ

4.4. Flutter Speed

Four U versus g curves were obtained by solving the flutter determinant for a number of
reduced frequencies. Each curve corresponds to one eigenmode. The flutter speed is
defined as the speed at which g first becomes zero in the U versus g curve. The
dimensionless U versus g curves for three mass ratios (m ¼ 0 
1, 0 
 39, 1 
 0) are shown in
Figure 8. It was found that the U versus g curve for flutter are the fourth, third and second
modes for m ¼ 0 
1, 0 
 39, 1 
 0, respectively; the mode therefore becomes lower with
increasing mass ratio. Hereafter, flutter in the nth mode is referred to as ‘‘nth mode
flutter’’, and the mode that most influences flutter is referred to as the ‘‘primary mode’’.
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The flutter wind speeds obtained in the N–S simulation are also plotted and compared in
Figure 8(b) (m ¼ 0 
39). The flutter speeds calculated by these two methods are in good
agreement. The computation time for potential flow analysis is very short, about 10 s per
sheet using a personal computer (200MHz Intel Pentium MMX Processor). The
parametric study that follows was conducted using potential flow analysis.

Figure 9 shows the relationship between U�
S and m for the parametric and experimental

analyses. Aerodynamic drag along the sheet surface was added to the potential flow
analysis. The results for CD ¼ 0 
0, 0 
 1 and 0 
 2 are shown. According to Fairthorne
(1930), the drag coefficient of flag paper is approximately 0 
 1 at m ¼ 0 
1. Therefore, the
CD ¼ 0 
1 results are considered to correspond to actual conditions. The range of primary
flutter with CD ¼ 0 
0 and 0 
 1 is shown in the lower part of Figure 9. Qualitatively, U�

S

tends to decrease with increasing m, which is in agreement with the experiment results.
However, there is a considerable quantitative discrepancy between the results of the
potential flow analysis and the experiment. The effect of CD is not large enough to account
for the magnitude of the discrepancy. Four mechanisms may be considered as contributing
to this discrepancy: the effect of the aspect ratio of the sheet, span-wise deformation,
stabilization due to deformation of the sheet surface by wind pressure, and the increase in
the rigidity during paper flutter compared to the static value obtained in the tensile test
and subsequently used in the formula for dimensionless flutter speed. The last mechanism
was determined from observations in natural frequency tests using small sheets of paper in
a vacuum vessel. However, the cause was not confirmed in the present study, and remains
to be investigated.

The calculated solutions from the four potential theory approaches (methods 2, 5, 6,
and 7) are compared in Figure 9. The solutions by methods 6 and 7 agree well in the range
0 
3 � m � 1, and the solutions by methods 2, 5, and 7 agree well for m > 1. These results
confirm the reliability of the method proposed in this study (method 7) over a wide range
of mass ratio.
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Figure 9. Relationship between dimensionless flutter speed and mass ratio. Present experiment: *, flag-type
paper; *, long-type paper; 4, elastic sheet; other experiment:}, Huang (1995); &, Kornecki et al. (1976). Present
theory: very thick black line, CD ¼ 0; medium black line, CD ¼ 0 
1; ordinary line, CD ¼ 0 
2; other theories: +,

Kornecki et al. (1976), }, Huang (1995); thick gray line, Guo & Pa.ııdoussis (2000).
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4.5. Flutter Frequency

The relationship between dimensionless flutter frequency (Ff =F1) and m is shown in
Figure 10, and the dimensionless natural frequencies of each primary mode
(F4=F1;F3=F1;F2=F1) are shown by dotted lines in the same figure. The flutter frequency
is the one to which the natural frequency changes by the effect of the unsteady lift as
shown by arrows. Also there is a phenomenon in which the flutter frequency changes in
step-like fashion at the transition point of the primary mode (near m ¼ 0 
15 and 0 
 7).

4.6. Flutter Mode

The amplitude ratio and the phase of the four component modes versus mass ratio
obtained from eigenvectors are shown in Figure 11. In this figure,

P
%qq2i ¼ 1. Both the

amplitude ratio and phase change significantly at the transition of the primary mode. The
amplitudes below m ¼ 0 
7 decrease in the order of first, second, third and fourth
component. The amplitude of the fourth mode is negligible over m ¼ 0 
15. When m is
greater than 0 
 7, the amplitudes of the modes higher than the second are negligibly small,
and flutter can be approximated by two degrees of freedom: the first and second modes.
The N–S simulation data at m ¼ 0 
39 was obtained from Figure 2(a). Both analyses are in
good agreement regarding the mode of flutter in that the amplitude ratio and phase of the
components are consistent.

The motions of the flutter modes are constructed by substituting the amplitude ratio and
phase of each mode into the following equation:

%yyðx; tÞ ¼
X4

i¼1

%qqi fiðxÞsinðotþ fi1Þ: ð19Þ

Figure 12 shows five mode-shapes that were generated from analysis data and one mode
shape taken from the experiments. The amplitude of the analytical mode at m ¼ 0 
39 was
adjusted to that of the experimental mode. The amplitudes of the modes at other values of
m are shown at a similar scale, and as such differ from real amplitudes, which tend to
1
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Figure 10. Relationship between dimensionless flutter frequency and mass ratio. Ff is the flutter frequency; Fi
is the natural frequency of ith mode.
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increase with increasing m. The wavenumber was set at 10 for all analytical modes, which is
not the same as in the experiment. The travelling wave motion is clearly observed at small
values of m; however, it approaches standing wave conditions with increasing m.

5. MECHANISM OF FLUTTER GENERATION

The mechanism of flutter generation was investigated for second mode flutter by analysing
the artificial damping g, which has been shown here to govern the flutter generation.
According to Figure 11(a), the amplitudes of the third and fourth modes are so small that
the equation for second mode flutter can be approximated by the equation with two
degrees of freedom, involving the first and second modes alone, i.e.,

ðZ � 2mk2 � CL11Þq1 � CL12q2 ¼ 0; ð20Þ

�CL21q1 þ ðF2Z � 2mk2 � CL22Þq2 ¼ 0: ð21Þ

Since it can be approximated as Z ¼ 0 in equation (20) for the U versus g curve of the
second mode, the following is obtained:

q1

q2
¼

CL12

�2mk2 � CL11
: ð22Þ
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Fig. 12. Change of flutter mode due to mass ratio.
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Assuming q2 ¼ 1, and by substituting equation (22) into (21), the following is obtained:

F2Z ¼ ð2mk2 þ CL22Þ þ CL21q1 ð23Þ

g ¼ ImðF2ZÞ=ReðF2ZÞ ð24Þ

The first term on the right-hand side of equation (23) is the contribution of the second
mode, and the second term is the contribution of the coupling term between the first and
second modes.

The formation process of g in the unstable (m ¼ 1; k ¼ 1) is described as follows in
reference to Figure 13: (i) the amplitude of the second mode (q2) can be represented by a
unit vector (1, 0); (ii) the resultant force of inertia and unsteady lift for q2 has a large real
component and a small negative imaginary component; the effect of these mechanisms on
flutter is therefore small; (iii) as follows from CL12 and the transfer function
[�1=ð2mk2 þ CL11Þ], the amplitude of q1 is amplified to about double that of q2, and the
phase of q2 is advanced by about 908; (iv) the second term on the right-hand side of
equation (23) is located in the third quardrant, in which flutter is promoted; this is
considered to be due to the fact that the coupling term CL12CL21 amplifies the transfer
function [�1=ð2mk2 þ CL11Þ], as shown in expression H in Figure 13, which also causes a
phase delay (b); therefore, the coupling term CL12CL21 can be considered to be the driving
force for the flutter phenomenon; (v) the value of g becomes positive due to the effect of
CL12CL21.

These results show that the coupling term CL12CL21 is the dominant factor in the second
mode flutter. The authors have also confirmed that CL23CL32 and CL34CL43 are the
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Figure 13. Formation process of artificial structural damping g in unstable condition.
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dominant factors in the third and fourth mode flutter, respectively. Thus, it can be
concluded that CLn�1;nCLn;n�1 is the dominant factor in the nth mode flutter.

6. CONCLUSION

Two different analytical methods were developed in order to investigate the phenomenon
of paper flutter. The methods employed were N–S simulation using a super-computer,
and potential flow analysis using a personal computer. The results are summarized as
follows.

(i) In N–S simulation, the transient response and isovorticity contours were obtained by
means of a time-marching scheme. It was shown that the flow around a fluttering sheet is
similar to that obtained by potential flow analysis.

(ii) Potential flow analysis is adequate for parametric study, with a relatively short
computation time of about 10 s per sheet using a personal computer yet providing the
same accuracy as N–S simulation. A parametric study was carried out by potential flow
analysis, and new phenomena that had not been recognized in experiments, such as the
relationship between flutter mode and mass ratio, were discovered.



THEORETICAL STUDY OF PAPER FLUTTER 559
(iii) The formation process of g, which has been shown to govern the occurrence of
flutter, was analysed in vector form, and the mechanism and dominant factor in flutter
generation was clarified. It was shown that the coupling term in unsteady lift is the
dominant factor in sheet flutter.
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APPENDIX: NOMENCLATURE

A area of one side of the sheet surface
b semichord
c chord length
cp unsteady pressure coefficient, p=ð1

2
rU2q=bÞ

CLij generalized unsteady lift coefficient, QLij=ð12rU
2qjjÞ

CDij generalized drag coefficient, QDij=ð12rU
2qjÞ

CD drag coefficient, T=ð12rU
2AÞ

d web span
EI bending stiffness per unit width
fi ith natural mode function
F frequency
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Ff flutter frequency
Fi natural frequency of ith natural mode
g artificial damping coefficient in U2g method
h thickness of sheet
i imaginary unit,

ffiffiffiffiffiffiffi
�1

p
k reduced frequency, bo=U
m area density of sheet, rph
Mi generalized mass
p unsteady pressure
q generalized coordinate
q� dimensionless generalized coordinate, q=b
QL generalized lift force
QD generalized drag force
t time
t� dimensionless time, ðU=bÞt
T tension
U flow speed
US sheet flutter speed (self-excited starting point)
UQ sheet flutter speed (quenching point)
U� dimensionless flow speed
U�
S dimensionless sheet flutter speed (self-excited starting point)

x; y Cartesian coordinates
x�; y� dimensionless Cartesian coordinates, x=b, y=b
Greek letters
m mass ratio, m=rc
r air density
rp density of sheet material
fij phase between ith mode and jth mode
o circular frequency
y �cos�1ðx=bÞ
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